System Impact Study for Transmission Service Request from Cogentrix to Ameren \& Entergy

SPP/WSCC
Transmission Planning
(\#OAIP 99004)

August 14, 1999

Table of Contents

Table of Contents 2
Executive Summary 3
Introduction 4
Study Methodology 5
Table No. 1 7
Table No. 2 8
Available Transfer Capability 9
Table No. 3 10
System Improvements Costs 11

Executive Summary

PECO Energy has requested a system impact study for long-term firm point to point transmission service from a merchant plant in the vicinity of Public Service Company of Oklahoma's (PSO's) Riverside Power Station. Yearly transmission service for 800 MW has been requested for 2001. Two separate requests were made for 400 MW each, OASIS request \# 121376 from CSW to Entergy and OASIS request \# 121377 from CSW to Ameren.

The principal objective of this study is to identify system problems and potential system modifications necessary to facilitate the two 400 MW transfers while maintaining system reliability and stability. For the purposes of this study the two 400 MW transfers were studied together.

The analysis in this document shows that to accommodate an 800 MW transfer, upgrades will be required on the CSW 69 kV and 138 kV transmission systems. These upgrades include reconductoring of a 138 kV transmission line, changing out disconnect switches and changing out jumpers. The total cost of these upgrades in 1999 dollars is $\$ 775,000$.

The SPP and CSW shall use due diligence to add necessary facilities or upgrade the Transmission system to provide the requested transmission service, provided PECO Energy agrees to compensate CSW for such costs pursuant to the terms of section 27 of the SPP Open Access Transmission Tariff. Expedited procedures for new facilities are available to PECO Energy per section 19.8 of the SPP Open Access Transmission Service Tariff.

Engineering and construction of any new facilities or modifications will not start until after a transmission service agreement and/or construction agreement is in place and CSWS receives the appropriate authorization to proceed from the SPP after they receive authorization from the transmission customer.

Introduction

PECO Energy has requested a impact study for transmission service from a merchant plant in the vicinity of Public Service Company of Oklahoma's (PSO's) Riverside Power Station. Yearly transmission service for 800 MW has been requested for 2001. The total generation capability of the plant is 900 MW .

The principal objective of this study is to identify the restraints on the system that may limit the transfer to less than 800 MW. This study includes steady-state contingency analysis (PSS/E function ACCC) and Available Transfer Capability (ATC) analysis.

The steady-state analysis considers the impact of an 800 MW transfer on transmission line loading and transmission bus voltages for outages of single, double, and triple circuit transmission lines, autotransformers, and generators on the CSW system.

ATC analysis shows the amount of First Contingency Incremental Transfer Capabilities (FCITC) between the given study systems and what if any the limitations are for transferring up to 800 MW .

Study Methodology

The Central \& South West (CSW) and Southwest Power Pool (SPP) criteria state that the following conditions be met in order to maintain a reliable and stable system.

1) More probably contingency testing must conclude that
a) All facility loadings are within their emergency ratings and all voltages are within their emergency limits ($0.90-1.05$ per unit) and
b) Facility loadings can be returned to their normal limits within four hours
2) Less probable contingency testing shall conclude that
a) Neither uncontrolled islanding, nor uncontrolled loss of large amounts of load will result.

More probable contingency testing is defined as losing any single piece of equipment or multicircuit circuit transmission lines. Less probable contingency testing involves the loss of any two critical pieces of equipment such as 345 kV autotransformers and generating units or the loss of critical transmission lines in the same right-of-way.

A 2000 summer peak case and a 2000 winter peak case were used to model the transmission network and system loads. A base Southwest Power Pool Case for 2001 summer and winter peaks were not available at the time of this study. These cases were modified to reflect expected changes due to be in service by 2001 that were not included in the base cases.

Using the created models and the ACCC function of PSSIE, single and select double contingency outages on the CSW system were analyzed. Shown in table 1 and table 2 are the outages that caused overloads and the upgrades needed to solve the overloading problems in both the summer and winter cases.

The contingency that caused the most problems was a less probable contingency. This contingency consists of the three 345 kV lines coming out of Riverside 345 kV substation and one 138 kV line out of Riverside 138 kV substation. The four lines are in the same right-of-way for 1.6 miles, while the three 345 kV lines are in the same right-of-way an additional 2.1 miles.

The most troublesome problem caused by the above outage is the overloading of the single $345 / 138 \mathrm{kV}$ autotransformer at Riverside 345 kV substation. The transfer capability from the merchant would be limited to 625 MW , regardless of what system the transfer was with. If this outage occurs, generation will have to be curtailed at the plant, unless the 138 kV line from Riverside Station to Wekiwa substation was converted to 345 kV . This conversion would alleviate all overloading conditions caused by the outage.

In both the summer and winter peak studies a few problems were found on systems other than CSW. In the 2001 summer peak study the jointly owned line from CSW's Riverside substation to OG\&E's Beeline substation overloads during several outages. In the 2001 winter peak study the OG\&E owned line from Bristow to Bluebell loads to 100.4% of its emergency rating during the outage of the three 345 kV lines out of Riverside 345 kV substation that are in the same right-of-way.

Table No. 1: 2001 Summer Peak Transmission Service Study - 800 MW

Conditions:

1) 2001 Summer Peak
2) $126^{\text {th }} \&$ Harvard Generation modeled -800 MW

Using ACCC function of PSSSE

Load flow case description	Overloaded lines/ Buses with low voltage	Solutions
Base Case	None	None
Prattville - Sand Springs 138kV feeder 81-818 out	Explorer Glenpool (OG\&E) - Riverside 138kV - 102.7\% of emergency	Rebuild 4.71 miles of 795 ACSR with 1272 ACSR
Tulsa North - Northeastern Station 345 kV feeder 90-909 out	Tulsa Power Station (TPS) - Carson Tap 138kV - 102.4% of emergency	Replace 600A switches (CB 1333A) at TPS
Explorer Glenpool (OG\&E) - Riverside 138 kV feeder 81-523 out	TPS - Carson Tap 138kV - 114\% of emergency TPS - Oaks $138 \mathrm{kV}-102.9 \%$ of emergency	Replace 600A switches (CB 1333A) at TPS Replace 600A switches (CB 1329A) at TPS
TPS - Sand Springs 138 kV feeder 81-808 out	TPS - Oaks 138kV - 105.5\% of emergency	Replace 600A switches (CB 1329A) at TPS
TPS - Sand Springs \& Denver - Sand Springs 138 kV feeders 81-812 \& 81-524 out	TPS - Carson Tap 138kV - 105.7\% of emergency	Replace 600A switches (CB 1333A) at TPS
Riverside Station 1.52 mile 138 kV Triple circuit, 81-522 to TPS, 81-513 to $96^{\text {th }} \&$ Yale, and 81-809 to South Hudson out	Explorer Glenpool (OG\&E) - Riverside $138 \mathrm{kV}-100.2 \%$ of emergency	Rebuild 4.71 miles of 795 ACSR with 1272 ACSR
Sand Springs to TPS 2.2 mile Double Circuit, 138 kV fdrs 81-812 \& 81-808	Explorer Glenpool (OG\&E) - Riverside $138 \mathrm{kV}-104.9 \%$ of emergency	Rebuild 4.71 miles of 795 ACSR with 1272 ACSR
Riverside South same Right of Way 345 kV lines 90-902 to Oneta, 90-907 to Arcadia, \& 345 kV line to Muskogee and 138kV line 81-544 to Kimberly Clark	Riverside - Weleetka (SWPA) $138 \mathrm{kV}-105.7 \%$ of emergency TPS - Carson Tap 138kV - 111.1\% of emergency Riverside $345 / 138 \mathrm{kV}$ Autotransformer 128.9% of emergency TPS - Riverside 138 kV - 104% of emergency Riverside to Explorer Glenpool (OG\&E) - 111.9\% of emerg. TPS to $36^{\text {th }} \&$ Lewis $138 \mathrm{kV}-104 \%$ of emergency	Rebuild 46.13 miles of 266.8 ACSR with 795 ACSR Replace 600A switches (CB 1333A) at TPS Convert Riverside to Wekiwa line to 345 kV Replace 600A switches (CB 1313A) at TPS Rebuild 4.71 miles of 795 ACSR with 1272 ACSR Replace 1200 A switches at TPS \& $36^{\text {th }} \&$ Lewis

Table No. 2: 2001 Winter Peak Transmission Service Study - 800 MW

Conditions:

1) 2001 Winter Peak
2) $126^{\text {th }} \&$ Harvard Generation modeled -800 MW

Using ACCC function of PSS\E

Load flow case description	Overloaded lines/ Buses with low voltage	Solutions
Base Case	None	None
Riverside - Tulsa Power Station 2.93 mile double circuit, 81-521 \& 81-550	Riverside - TPS 138kV line 81-522-100.6\% of emergency	Replace 600A switches (CB 1313A) at TPS
Riverside South same Right of Way	Riverside 345/138kV Autotransformer 129\% of emergency	Convert Riverside to Wekiwa line to 345kV Replace 600A switches (CB 1313A) at TPS 345kV lines 90-902 to Oneta, 90-907 to Arcadia, \& 345kV line to Muskogee and 138kV line 81-544 to Kimberly Clark
TPS - Riverside 138kV line 81-522-106.6\% of emergency		
Bristow - Bluebell 138kV (OG\&E owned) -100.4\% of emerg.	OG\& owned	

Available Transfer Capability Existing System (No Improvements)

ATC studies were run using default participation points for both Entergy and Ameren. To accomplish this, the generation was scaled down among all available on-line generators at both companies. The purpose of these studies was to ensure that the desired power transfer (800 MW) could be accomplished while maintaining system reliability.

Results for the studies are shown in Table 3. The complete TLTG outputs for both summer and winter cases are attached.

As shown in the tables the amount of First Contingency Incremental Transfer Capability available is less than 800 MW in the seasons studied.

TABLE 3: AVAILABLE TRANSFER CAPABILITIES

2001 Summer Peak Transfer - 800 MW		FCITC (MW)	Limiting Constraints	Contingency
From	To			
CsW	Ameren (400 MW) \& Entergy (400 MW)	45	Tulsa Power Station - Carson Tap 138kV (PSO); Switches	Tulsa Power Station - Oaks 138kV (PSO)
2001 Winter Peak Transfer - 800 MW		Transfer Capability (MW)	Limiting Constraints	Contingency
From	To			
CSW	Ameren (400 MW) \& Entergy (400 MW)	477	Dyess - East Rogers 161 kV (SWEPCO); Jumpers	Flint Creek - Gentry 161kV (SWEPCO)

For all constraints limiting the transfer capability below 800 MW , see the attached TLTG outputs.

System Improvements

In order to accommodate the two requested transfers of a total of 800 MW the following improvements must be made on the CSW system. These improvements and estimated costs correspond with the base case scenario of sending 400 MW to Entergy and 400 MW to Ameren.

SYSTEM IMPROVEMENT	ESTIMATED COST (1999 DOLLARS)
Changeout three(3) 138kV 600A disconnect switches at Tulsa Power Station (CB 1333A) with new 2000A switches (TPS to Carson Tap overload)	$\$ 55,000$
Changeout three(3) 138kV 600A disconnect switches at Tulsa Power Station (CB 1329A) with new 2000A switches (TPS to Oaks overload)	$\$ 55,000$
Changeout three(3) 138kV 600A disconnect switches at Tulsa Power Station (CB 1313A) with new 2000A switches (TPS to Riverside overload)	$\$ 55,000$
Changeout 500 CU jumpers at Dyess substation with 750 Cu jumpers (Dyess to East Rogers overload)	$\$ 10,000$
Reconductor \& Rebuild Riverside -Beeline (OG\&E) 138kV rebuild 2.81 miles of OG\&E owned line.	$\$ 600,000$

The estimated time frames for engineering and construction of the projects listed above are:

Switch changeouts: 6 Months
Jumper changeout: 1 Month
81-523 reconductor: 12 Months

Times are for each individual project. No consideration was given to possible outage conflicts during construction, conflicts with construction during the summer peak, engineering and construction manpower constraints, etc. Time frame is based on engineering starting when approval is received to start on the project.

CKT 1
528.0 3131 DYESS 51613135 EROGERS5 1611 CKT 1
533.3 3800 T.P.S.-4 $138 \quad 3862$ OAKS--W4 1381

CKT 1

CKT 1
CKT 1

CKT 1
565.13795 R.S.S. -41385148 EXGLN4 1381

CKT 1

CKT 1

CKT 1
620.4 3794 R.S.S. -73453795 R.S.S. -41381

CKT 1

CKT 1

CKT 1

CKT 1
620.4 3794 R.S.S. $-7 \quad 345 \quad 3795$ R.S.S. $-4 \quad 13811.00000$ CKT 1

CKT 1

CKT 1
669.93800 T.P.S. -41383812 36LEWIS 41381

CKT 1

CKT 1

CKT 1

CKT 1
679.53795 R.S.S. -41383068 WELEETK4 138110.07490

CKT 1

CKT 1

CKT 1

CKT 1

OPEN 3795 [R.S.S.-4 138] TO 3859 [KIMCLRK4 138]

0.03462	202.7	221.0	OPEN	3133	[ECNTRTN5	161]	TO	3187	[GENTRYR5	$161]$
0.03702	122.8	142.5	OPEN	3800	[T.P.S.-4	138]	TO	3750	[CARSN-T4	$138]$
			OPEN	3750	[CARSN-T4	$138]$	TO	3751	[UNIONAV4	1381
			OPEN	3751	[UNIONAV4	138]	TO	3760	[CARSN-C4	1381
			OPEN	3750	[CARSN-T4	138]	TO	3827	[S.S.---4	1381
0.10336	176.0	234.4	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD 7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE 7	$345]$
1.00000	-4.6	615.8	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE 7	$345]$
			OPEN	3795	[R.S.S. -4	$138]$	TO	3859	[KIMCLRK4	1381
1.00000	-4.6	615.8	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD 7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE 7	$345]$
0.14818	187.7	286.9	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD 7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE 7	$345]$
			OPEN	3795	[R.S.S. -4	138]	TO	3859	[KIMCLRK4	$138]$
0.07490	64.3	115.2	OPEN	3794	[R.S.S.-7	$345]$	TO	4808	[ARCAD 7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
			OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE 7	$345]$
			OPEN	3795	[R.S.S. -4	138]	TO	3859	[KIMCLRK4	$138]$

888.0	17853	5BULLSH*	161	17875	5MIDWAY\#	161	1	0.03852	127.2	161.4	OPEN	2924	[NORFORK5	161]	TO	2936	[BULL SH5	161]
CKT 1																		
900.0	113	126 HAR 7	345	3794	R.S.S. -7	345	1	1.00000	0.0	900.0	BASE	CASE						
934.4	3827	S.S.---4	138	3862	OAKS--W4	138	1	-0.03690	-108.3	142.8	OPEN	3750	[CARSN-T4	138]	TO	3800	[T.P.S. -4	138]
CKT 1																		
969.2	4023	OKMULGE 4	138	4049	EC.HEN-4	138	1	0.06807	39.0	105.0	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE7	$345]$
CKT 1																		
											OPEN	3795	[R.S.S. -4	$138]$	TO	3859	[KIMCLRK4	138]
CKT 1																		
975.6	3750	CARSN-T4	138	3827	S.S.---4	138	1	0.03688	106.7	142.7	OPEN	3800	[T.P.S. -4	$138]$	TO	3862	[OAKS--W4	$138]$
CKT 1																		
976.1	3750	CARSN-T4	138	3827	S.S.---4	138	1	0.08559	59.1	142.7	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE7	$345]$
CKT 1																		
											OPEN	3795	[R.S.S. -4	138]	TO	3859	[KIMCLRK4	1381
CKT 1																		
977.4	3972	SCOFVLE 4	138	6682	DEARING 4	138	1	0.05420	90.0	143.0	OPEN	3929	[COFTAP 7	$345]$	TO	6606	[NEOSHO 7	$345]$
CKT 1																		
985.6	4935	BRSTO4	138	5142	BLUBL4	138	1	-0.07944	-63.7	142.0	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD 7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE7	$345]$
CKT 1																		
											OPEN	3795	[R.S.S. -4	$138]$	TO	3859	[KIMCLRK4	$138]$
CKT 1																		
999.3	5134	PECAN5	161	5135	PECAN 7	345	1	-0.08623	-277.6	363.8	OPEN	5124	[MSKGE7	$345]$	TO	5202	[FTSMI7	$345]$
CKT 1																		
1012.6	3823	T.S.E. -4	138	3847	S.HUD. - 4	138	1	-0.16558	-19.3	187.0	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD 7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124	[MSKGE7	$345]$
CKT 1																		
											OPEN	3795	[R.S.S. -4	$138]$	TO	3859	[KIMCLRK4	138]
CKT 1																		
1026.7	4028	WELETK4	138	4049	EC.HEN-4	138	1	-0.06807	-35.1	105.0	OPEN	3794	[R.S.S. -7	$345]$	TO	4808	[ARCAD 7	$345]$
CKT 1																		
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819	[ONETA--7	$345]$

CKT 1
CKT 1
1027.3 3788 52DELTP4 138 3812 36LEWIS4 138 1 -0.14818 -134.6 286.8 OPEN 3794 [R.S.S.-7 345] TO 4808 [ARCAD7 345] CKT 1

CKT 1
CKT 1

CKT 1 1030.4 5147 BEE 41385148 EXGLN4 1381 -0.11385 -169.5 286.8 OPEN 3794 [R.S.S.-7 345] TO 4808 [ARCAD7 345] CKT 1

CKT 1

CKT 1
CKT 1

OPEN 3794 [R.S.S.-7 345] TO 5124 [MSKGE7 345]
OPEN 3795 [R.S.S.-4 138] TO 3859 [KIMCLRK4 138]

OPEN 3794 [R.S.S.-7 345] TO 3819 [ONETA--7 345]

OPEN 3794 [R.S.S.-7 345] TO 5124 [MSKGE7 345]
OPEN 3795 [R.S.S.-4 138] TO 3859 [KIMCLRK4 138]

OPEN 3794 [R.S.S.-7 345] TO 3819 [ONETA--7 345]
OPEN 3794 [R.S.S.-7 345] TO 5124 [MSKGE7 345]
OPEN 3795 [R.S.S.-4 138] TO 3859 [KIMCLRK4 138]

											OPEN	3795	[R.S.S. -4	138]	TO	3859		[KIMCLRK4	$138]$
CKT 1																			
786.1	3795	R.S.S. -4	138	3800	T.P.S.-4	138	1	0.10649	59.2	142.9	OPEN	3794	[R.S.S. - 7	$345]$	TO	4808		ARCAD 7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819		ONETA--7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. - 7	$345]$	TO	5124		- MSKGE7	$345]$
CKT 1																			
808.2	4023	OKMULGE 4	138	4049	EC. HEN-4	138	1	0.06807	49.8	104.8	OPEN	3794	[R.S.S. -7	$345]$	TO	4808		- ARCAD 7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819		ONETA--7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124		- MSKGE 7	$345]$
CKT 1																			
											OPEN	3795	[R.S.S. -4	138]	TO	3859		KIMCLRK4	138]
CKT 1																			
810.5	4935	BRSTO4	138	5142	BLUBL4	138	1	-0.07945	-77.5	141.9	OPEN	3794	[R.S.S. -7	$345]$	TO	4808		ARCAD 7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819		ONETA--7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124		- MSKGE 7	$345]$
CKT 1																			
											OPEN	3795	[R.S.S. -4	138]	TO	3859		KIMCLRK4	$138]$
CKT 1																			
840.6	4028	WELETK 4	138	4049	EC. HEN-4	138	1	-0.06807	-47.5	104.8	OPEN	3794	[R.S.S. -7	$345]$	TO	4808		ARCAD 7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819		ONETA--7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124		MSKGE 7	$345]$
CKT 1																			
											OPEN	3795	[R.S.S. -4	138]	TO	3859		KIMCLRK4	138]
CKT 1																			
860.4	4935	BRSTO4	138	5142	BLUBL 4	138	1	-0.07433	-78.0	141.9	OPEN	3794	[R.S.S. -7	$345]$	TO	4808		[ARCAD 7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	3819		ONETA--7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S. -7	$345]$	TO	5124		MSKGE7	$345]$
CKT 1																			
862.1	3795	R.S.S. -4	138	3800	T.P.S.-4	138	1	0.03241	115.0	142.9	OPEN	3795	[R.S.S. -4	$138]$	TO	3771		JENKS--4	138]
CKT 1																			
											OPEN	3771	[JENKS--4	138]	TO	3826		S. HIL-W4	138]
CKT 1																			
											OPEN	3826	[S.HIL-W4	$138]$	TO	3800		T.P.S. -4	$138]$
CKT 1																			
											OPEN	3826	[S.HIL-W4	138]	TO	3871		52DEL-W4	$138]$
CKT 1																			
											OPEN	3800	[T.P.S. -4	1381	TO	3864		OAKS-E 4	$138]$

CKT 1

											OPEN	3864	[OAKS-E4	138]	то	3795	[R.S.S.-4		138]
Cкт 1																			
862.7	4023	OKMULGE 4	138	4049	EC.HEN-4	138	1	0.06330	50.2	104.8	OPEN	3794	[R.S.s.-7	$345]$	то	4808	[ARCAD 7	$345]$
Cкт 1																			
											OPEN	3794	[R.S.S.-7	$345]$	то	3819		NETA--7	$345]$
CKT 1																			
											OPEN	3794	[R.S.S.-7	345]	то	5124	[MSKGE 7	$345]$
Cкт 1																			
890.2	3795	R.S.S. -4	138	3068	WELEetK4	138	1	0.07490	64.6	131.3	OPEN	3794	[R.S.S.-7	$345]$	то	4808	[ARCAD 7	$345]$
Скт 1																			
											OPEN	3794	[R.S.S.-7	$345]$	то	3819		NETA--7	$345]$
Скт 1																			
											OPEN	3794	[R.S.S.-7	$345]$	TO	5124	[MSKGE 7	$345]$
CKT 1																			
											OPEN	3795	[R.S.S. -4	138]	то	3859		MCLRK 4	138]

